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Abstract 
 
Condition-based maintenance has become more popular in recent years because of its advantages in terms of minimizing downtime, 

extending lifetime, and reducing cost. This kind of maintenance strategy is based on condition monitoring of machinery in operation. 
Ccondition monitoring is a key step in maintenance decision analysis. Numerous non-stationary signal processing methods have been 
developed to reveal fault characteristics in rotating machinery. In this study, an adaptive signal analysis method called empirical mode 
decomposition is employed for gearbox vibration signal preprocessing. Considering a modulation phenomenon that appeared in a faulty 
gear, the Hilbert Transform is applied to obtain an envelope signature, which usually contains abundant fault-related signatures. Being 
different from other failure classification problems, this paper is concerned with determining the probability of normal condition based on 
current observations describing the condition of a gearbox. Moreover, according to Bayes rule, this problem can be translated to estimate 
the conditional probability of current observations given normal gearbox condition using a Hidden Markov Model. From this point, a 
novel probabilistic health description index called Average Probability Index is proposed for gearbox health evaluation. For automatic 
detection, a semi-dynamic threshold is presented to detect an early fault in a gear. At last, validation and comparative studies are per-
formed using two sets of gearbox lifetime accelerated testing vibration data. The results show the advantages of the proposed method for 
gearbox condition monitoring. 
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1. Introduction 

Machinery suffers from many kinds of failures during opera-
tion. Thus, research on maintenance becomes necessary to 
guarantee the reliability of machinery. The history of mainte-
nance engineering can be traced back to run-to-failure mainte-
nance, which does not implement maintenance actions until 
machinery breakdown. However, this kind of maintenance 
strategy has many disadvantages, including high downtime, 
equipment damage, high repair cost, etc. Later, time-based 
preventive maintenance, which is also called planned mainte-
nance, was developed to perform maintenance activities on 
the basis of machinery failure statistics. Since it does not con-
sider the current health condition of machinery, time-based 
preventive maintenance cannot avoid random breakdowns and 
can even make the total maintenance cost higher. Therefore, it 
is crucial to explore a new strategy to overcome the aforemen-

tioned disadvantages. Fortunately, a very useful strategy 
called Condition-based Maintenance (CBM) has been devel-
oped to implement a planned maintenance schedule. CBM 
regards the health condition of machinery as the basis for 
maintenance decision-making. Therefore, the proper method 
to monitor the health condition of machinery is a vital ques-
tion in CBM and is the motivation for this study [1].  

Fig. 1 illustrates three main steps in CBM, which can also be 
treated as three modules: data acquisition, data processing, and 
maintenance decision-making. First, original signals, such as 
vibration information, are obtained by using sensors. Second, 
these signals are processed to extract or reveal fault signatures 
in order to check the health condition of machinery. Third, 
effective maintenance policies are planned [1]. Data process-
ing is the key step that extracts critical information from 
abundant redundancy data collected by the data acquisition 
module, and the output of it determines the performance of the 
maintenance decision-making module.  

Many data processing methods have been developed to re-
veal fault characteristics of non-stationary mechanical vibra-
tion signals. Among all these available methods, the Wavelet 
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Transform (WT) [2] is widely used in mechanical fault detec-
tion. The main advantage of WT is its excellent performance 
with good time resolution at high frequency and good fre-
quency resolution at low frequency. However, the application 
of WT has limitations. It is hard to determine which wavelet 
should be used to measure the similarity between the original 
signal and the wavelet function and to determine how many 
decomposition levels are needed. Further, once both wavelet 
function and decomposition levels are determined, they will 
be applied to the whole analysis process. That is to say, this 
method is a non-adaptive signal processing technique. There is 
also an energy leakage problem owing to the limited length of 
the wavelet function.  

In recent years, another novel adaptive time series analysis 
technique called Empirical Mode Decomposition (EMD) [3] 
has been developed to analyze non-stationary and non-linear 
signals. This method is capable of decomposing a signal into a 
number of Intrinsic Mode Functions (IMFs) according to the 
local characteristic time/scale of the signal itself. Therefore, 
the decomposition process is a self-adaptive procedure. What 
is more, the generated IMFs are stationary. Due to this poten-
tial in signal processing, a lot of research has been conducted 
recently [4-9]. For example, Fan and Zuo [4] employed EMD 
to decompose raw vibration signals into IMFs, which is a self-
adaptive program to detect machine faults at the earliest onset 
of deterioration. Chen et al. [5] presented an ensemble empiri-
cal mode decomposition method in pipeline corrosion inspec-
tion. Dong et al. [6] improved the sifting process of EMD for 
bearing fault diagnosis. Bassiuny et al. [7] employed EMD for 
fault diagnosis of the stamping process. Gao et al. [8] used 
EMD to decompose a signal into IMFs and presented the con-
cept of Combined Mode Function (CMF) to solve the failure 
of IMFs to reveal signal characteristics in case of noise. Li et 
al. [9] proposed a new Ranged Angle-Empirical Mode De-
composition method to identify the vital components of a 
diesel engine that have abnormal clearance.  

Furthermore, the phenomena of signal modulation exist due 
to the occurrence of local faults in the process of condition 
monitoring. Since EMD decomposes multi-component ampli-
tude and frequency-modulated signals, and since each ob-
tained IMF may be amplitude-modulated or frequency-
modulated, it is necessary to apply the Hilbert Transform (HT) 
for signal demodulation.  

With the motivation of emphasizing the capability of EMD 
in early fault detection, we conducted research to determine 
EMD’s behavior for online health evaluation of machinery. 
This is different from the work of others [4-9], as they focused 
on applying EMD to distinguish different machinery fault 
patterns, while the goal of our study is to realize online health 
description with a probabilistic scheme based on EMD and the 

Hidden Markov Model (HMM).  
In this study we extract fault features using a combination of 

EMD, CMF, and HT. Next, a novel condition monitoring 
curve, which is described by the Average Probability Index 
(API), is constructed using HMM due to its success in speech 
recognition [10]. Moreover, this application of HMM has 
great novelty because traditional applications of HMM in 
CBM mostly concentrate on fault diagnosis rather than prog-
nosis [11-13]. Then, a kind of semi-dynamic threshold is de-
fined to detect the occurrence of an early fault. That is to say, 
an early fault happens when the proposed index API is lower 
than its corresponding dynamic threshold. 

The rest of this paper is organized as follows. Section 2 de-
scribes a signal processing method using Empirical Mode 
Decomposition. In Section 3, a novel health evaluation index 
for a gearbox and its semi-dynamic threshold is proposed. In 
Section 4, two sets of gearbox vibration data provided by the 
Applied Research Laboratory at Pennsylvania State University 
are used to validate the proposed method and comparisons are 
performed. Conclusions are presented in the end. 
 
2. Signal decomposition scheme 

2.1 Empirical mode decomposition 

The basic idea of Empirical Mode Decomposition is to de-
compose original signals into different Intrinsic Mode Func-
tion (IMF) components. Each IMF must satisfy the following 
conditions [3]: (1) in the whole data set, the number of ex-
trema and zero-crossings must either equal or differ at most by 
one. (2) At any point, the mean value of the envelopes defined 
by local maxima and local minima is zero.  

An IMF expresses a simple oscillatory mode compared with 
a simple harmonic function. The decomposition process of 
any signal ( )x t  can be described as follows: 

(1) Connect all the local maxima of signals using a cubic 
spline line. The connected line can be called the upper enve-
lope, 1u . 

(2) Repeat the process for local minima to obtain the lower 
envelope, 1l . The upper and lower envelopes should cover all 
of the data between them. 

(3) The mean of the upper and lower envelopes’ values is 
1m , so the first residual 1h  can be obtained as follows: 

 

1 1
1 2

u lm +=   (1) 

1 1( )h x t m= −   (2) 
 
(4) Ideally, if 1h  is an IMF, then it is the first component of 
( )x t . However, if 1h  is not an IMF, it is regarded as the 

original signal, and steps (1)- (3) are repeated. That is, 
 

11 1 11h h m= −   (3) 
 

Repeat sifting, i.e. up to k  times until 1kh  becomes an IMF, 
that is,  

 
Data acquisition 

 

Maintenance 
decision-making 

 
Date processing 

 
 
Fig. 1. A general flow chart of CBM program. 
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1 1( 1) 1k k kh h m−= − .  (4) 
 
Then the obtained IMF can be designated as: 
 

1 1kc h= .  (5) 
 

(5) Separate 1c  from ( )x t  and the residual 1r  can be given 
as  
 

1 1( )r x t c= − .  (6) 
 

(6) Treat 1r  as the original data, and repeat the process as 
described above n  times. As a result, n -IMF of signal ( )x t  
can be obtained as follows: 
 

1 2 2

1 .n n n

r c r

r c r−

− =

− =
  (7) 

 
The decomposition process does not stop until the residual 
nr  becomes a monotonic function or a constant from which 

no more IMF components can be extracted. To sum up (6) and 
(7), we can get:  
 

1

( ) ( ) ( )
n

i n
i

x t c t r t
−

= +∑ .  (8) 

 
2.2 Construction of combined mode function 

In machinery condition monitoring, a critical problem is the 
impact of noise, which may be caused by certain systematic 
factors such as sensor drifting, measurement error, etc. The 
existence of noise leads to distortion in EMD decomposition. 
In order to demonstrate this phenomenon, a simulated signal 

1( )x t  is defined by adding a noise component. That is,  
 

1( ) 5sin(120 ) 7sin(60 )sin(0.2 )
sin(10 ) 0.035 ( ) [0,1]

x t t t t
t rand t t

π π π
π

= +
+ + ∈

  (9) 

 
where rand (t) is normally distributed white noise. The analy-

sis results of 1( )x t  using EMD are shown in Fig. 2. It is obvi-
ous that 4 5,c c  and 6c  are the major components of 1( )x t . 
However, the existence of noise affects the decomposition 
results and 4c  is distorted locally. 

In order to deal with this problem, the concept of Combined 
Mode Function (CMF) [8] is applied in this paper. The idea of 
CMF is to mix neighboring IMFs to obtain a CMF, and this 
operation increases the accuracy of EMD. Generally, CMF sc  
is given by: 
 

1s i i i mc c c c+ += + +   (10) 
 
where 1 ,i n m n≤ ≤ −  is the maximal number of IMFs ob-
tained using EMD. In this example, a new CMF, as shown in 
Fig. 3, is realized by combining 3c  and 4c . Through this 
operation, the distortion caused by noise can be eliminated. 

 
2.3 Demodulation with Hilbert Transform 

In rotating machinery vibration analysis, another important 
issue is the impact of signal modulation. For example, in case 
a tooth failure occurs on a rotating gear, meshing frequency 
(caused by gear teeth meshing) is modulated by rotating fre-
quency (related to the existence of a fault), which results in the 
emergence of sidebands around the meshing frequency and its 
harmonics in spectrum analysis. According to the analysis 
results in Sections 2.1 and 2.2, each obtained IMF may be 
amplitude-modulated or frequency-modulated after a multi-
component amplitude-modulated or frequency-modulated 
signal is decomposed using EMD. Therefore, in order to over-
come modulation caused by faults, the Hilbert Transform is 
employed to reveal fault signatures. 

For time series ( )x t , its Hilbert Transform, [ ( )]H x t , which 
is a time-domain convolution that maps one real-valued time-
history into another, is defined as: 
 

1 ( )[ ( )] .xH x t d
t

τ τ
π τ

+∞

−∞
=

−∫   (11) 

 
Here, t and τ  are the time and translation parameters, respec-
tively. It is known that the Hilbert Transform is a frequency-
independent 90  phase shifter. Thus, this method does not 
affect the non-stationary characteristics of modulated signals, 
which may be caused by machine faults. Demodulation can be 
accomplished by forming a complex-valued time-domain 
signal called an analytic signal, which is given by 
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Fig. 2. EMD decomposition results of 1( )x t . 
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Fig. 3. A CMF sc  by combining 3c  and 4c . 
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( )( ) ( ) [ ( )] ( ) tB t x t iH x t b t eφ= + =   (12) 
 

where 2 2( ) ( ) [ ( )]b t x t H x t= + , [ ( )]( ) arctan
( )

H x tt
x t

φ = , and 

1i = − ; ( )b t is the envelope of ( )B t . 
 

3. Condition evaluation with health index 

In order to provide useful information for CBM maintenance 
decisions, it is necessary to establish a condition monitoring 
system that can give an actual description of machinery health 
conditions. Our work described in the previous section mainly 
focused on signal processing methods, including decomposi-
tion of vibration signal with EMD and selection of the appro-
priate CMF for further analysis. In this section, a novel index 
called the Average Probability Index is defined on the basis of 
the selected CMF, which gives a quantitative description of 
machinery health conditions. The proposed API is constructed 
using HMM. The key advantage of this method is its adap-
tiveness, owing to the application of an adaptive signal proc-
essing method, EMD, for signal decomposition. Furthermore, 
to identify the occurrence of an early fault, a semi-dynamic 
threshold criterion corresponding to this API index is pro-
posed. In order to better understand the work conducted in this 
paper, Fig. 4 shows the flowchart of the proposed method. 

 
3.1 Extraction of characteristic features 

In the implementation of Condition-based Maintenance, on-

line condition monitoring is usually expected, since it can 
provide timely information for maintenance decision analysis. 
In this research, online condition monitoring is realized by 
collecting vibration data at a certain time interval (e.g., once 
every 30 minutes) and numbered consequently. Therefore, 

( )jx t  represents a piece of signal collected at a certain time 
point j. 

Assume that the signal ( )jx t  collected at time point j is di-
vided into L windows of equal length 1 ( )jx t , 2 ( )jx t , …, ( )j

Lx t . 
According to the decomposition procedure described in Sec-
tion 2, L pieces of demodulated CMFs can be obtained and are 
termed ' j

sic , i = 1, 2, …, L. The first five steps in Fig. 4 de-
scribe this decomposition process, which includes three main 
tasks: EMD decomposition, construction of CMF, and de-
modulation with a Hilbert Transform. 

To extract fault features from demodulated ' j
sic , spectrum 

analysis is performed with a Fourier Transform as follows: 
 

' 2( ) ( )j j ift
si siES f c t e dtπ

+∞
−

−∞
= ∫  1,2,i L= .  (13) 

 
The result of the Fourier Transform reflects the energy dis-

tribution of a signal in the frequency domain. In the case of 
gearbox condition monitoring, the existence of a fault results 
in a change of energy. Therefore, in the context of gear fault 
detection, the summation of these amplitude values of the 
envelope spectrum will increase greatly for a faulty gear com-
pared with a normal gear. Thus, a new term is defined to de-
scribe the total energy of ' j

sic , 
 

10log ( ( ( )))j j
si siSES sum ES f=  1,2,i L= .  (14) 

 
Finally, a new feature jT  can be extracted from the vibra-

tion data collected at time j as follows, which includes L fea-
ture vectors.  

1 1 2

2 2 3 1

3 3 4 2

1 ( 1)

[ , , , ]

[ , , , ]

[ , , , ]

[ , , , ]

j j j j
s s sL

j j j j
s s s

j j j j
s s s

j j j j
L sL s s L

T SES SES SES

T SES SES SES

T SES SES SES

T SES SES SES −

=

=

=

=

  (15) 

1 2[ , , , ].j j j j
LT T T T= …   (16) 

 
3.2 Definition of API based on HMM 

When features have been extracted, the proposed health in-
dex can be defined using Hidden Markov Model. The HMM 
is a doubly embedded stochastic model that has been widely 
applied in pattern recognition, including fault classification. 
However, the work with HMM in this paper is different from 
others, since we utilize HMM for the definition of health in-
dex rather than fault classification. Generally, an HMM can be 
represented by a compact notation { , , }A Bλ π= . For more 
details about HMM, the readers is referred to reference [10]. 

IMF components j
in

j
i

j
i

j
i cccc ,,,, 321 are obtained after applying EMD to 

.,2,1),( Litx j
i =  

Use both index API and threshold to monitor the condition of gearbox 
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Divide )(tx j  into L windows of equal length )(,),(),( 21 txtxtx j
L

jj . 
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sic , Li ,2,1= to gain the envelope signals j

sic ' , Li ,2,1= .
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sic '  and obtain their absolute values )( fES j

si Li ,2,1= .

Compute the summation of each )( fES j
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  input vector jT  

End 

Use 1T to train 1λ  

 
Fig. 4. The flowchart of the average probability index. 
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To define API, assume that the hidden states are governed 
by a homogeneous Markov chain of order 1. Here, we use 1T  
to train HMM 1λ , which represents the normal condition of 
the gearbox. The purpose of HMM training is to estimate the 
model parameters { , , }A Bλ π=  and the training process is 
realized by fitting the observation probability distribution with 
Gaussian mixture models (GMMs) for each of the Q states 
using K-means. After that, improve the parameter estimates of 
HMM with a mixture of Gaussian outputs using the Baum-
Welch re-estimation algorithm [10]. Once the HMM for nor-
mal conditions is trained, the remaining features, jT s, are 
used as validation data. Since each feature extracted at time j 
includes L feature vectors, 1 2[ , , , ]j j j j

LT T T T= … , we can get a 
vector of output probability termed as 1 2[ , , , ].j j j j

LG G G G= …  
Therefore, a novel index called the Average Probability Index 
(API) is proposed as follows: 
 

1 2( ) 1,2,
j j j

LG G GAPI j j n
L

+ + += = …   (17) 
 
Here, variable j corresponds to the time point during vibration 
data collection. Since the proposed health index is a statistic of 
probability, we call it a probabilistic scheme for machinery 
health evaluation. Furthermore, since the lifetime gearbox 
vibration data used in the case study are collected and num-
bered sequentially at a certain time interval (e.g., once half an 
hour) along with the running of the test, time j is consistent 
with the file number and is represented by the file number 
(1,2, , )n… .  
In order to detect the occurrence of a gear fault, a semi-

dynamic threshold ( )Th t  is defined as below, based on the 
principle of a 3-sigma limit of time series data: 
 

21

1/21 1

21

1/21 1

( )

( ) ( ( ) )
1,2, , ,

3 ( )
1

( )

( )

1, 2, .( ) ( ( ) )

3 ( )
1

early

early early

t

t t
b

earlyb b

t

t t
b early early

early
b b

early early

API b

API b API b
t t t

t t
Th t

API b

t t t nAPI b API b
t

t t

=

= =

=

= =

⎧
⎪
⎪
⎪ −⎪
⎪ =

− ×⎪
−⎪=⎨

⎪
⎪
⎪

= + +⎪ −
⎪
⎪ − ×⎪ −⎩

∑
∑ ∑

∑
∑ ∑

…

…

 (18) 

Here, semi-dynamic means that the proposed threshold 

changes with the historical value of API before the occurrence 
of an early fault. If the current API is lower than the corre-
sponding threshold at the first time (tearly), we conclude that an 
incipient fault has occurred. Then, the semi-dynamic threshold 
becomes a fixed value.  
 
4. Experimental validation 

4.1 Experimental setup 

In this study, two sets of vibration data collected from a me-
chanical diagnostic test bed (MDTB) (shown in Fig. 5) were 
used to validate the proposed method. These vibration data 
were provided by the Applied Research Laboratory at Penn-
sylvania State University from two test runs of single reduc-
tion helical gearboxes, which are named as TR#5 and TR#10, 
respectively.  

The experiment started with a brand new gearbox under 
100% of the rated workload (Condition #1). After some time, 
the workload was doubled or tripled (Condition #2), and the 
test rig was shut down as a result of two accelerometers ex-
ceeding a predetermined limit of 150% of the root mean 
square. There were a series of inspections performed in the 
process of each test run. Each inspection generates a piece of 
signal collected in a 10-second window at a sampling rate of 
20 kHz. The signal is saved as a data file and numbered se-

 
 
Fig. 5. Mechanical diagnostic test bed. 

Table 1. Time information of workload change in TR#5. 
 

 Time  
period 

Time 
stamp 

File 
number Workload 

Condition #1
6/19/97 13:35 

(GMT) – 6/23/97 
13:35 (GMT) 

000-176 1-12 540 in-lbs 
(100%max)

Condition #2
6/23/97 13:35 

(GMT) – 6/24/97 
20:56 (GMT) 

192-262 13-83 1620 in-lbs 
(300%max)

 
Table 2. Time information of workload change in TR#10. 
 

 Time  
period 

Time 
stamp 

File 
number Workload 

Condition #1
11/17/97 16:20 

(GMT) – 11/21/97 
16:20 (GMT) 

000-190 1-12 540 in-lbs 
(100%max)

Condition #2
11/21/97 16:20 

(GMT) – 11/25/97 
13:25 (GMT) 

195-387 13-148 1080 in-lbs 
(200%max)

 
Table 3. Gearbox information of TR#5 and TR#10. 
 

Gearbox ID# DS3S0150XX 

Make Dodge APG 

Model R86001 

Gear Ratio 1.533 

Contact Ratio 2.388 

Number of Teeth (Driven gear) 46 

Number of Teeth (Driving pinion) 30 

Meshing Frequency 875.53 (Hz) 
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quentially. Tables 1-2 provide the time specifications of TR#5 
and TR#10. The mechanical specifications of the gearbox are 
given in Table 3. 

 
4.2 Signal adaptive decomposition and construction of CMF 

First of all, API should be emphasized for its adaptive qual-
ity because EMD itself possesses an adaptive characteristic in 
the process of decomposition, compared with Wavelet Trans-
form, Wavelet Packet Transform, and Wavelet Lifting 
Scheme, which means that there is no need to set the parame-
ters, such as decomposition level, basis function, and so on, to 
decompose the original signal. To validate the proposed me-
thod, we first investigated the performance of the signal de-
composition method proposed in this research. Fig. 6 shows 
the decomposition results of normal gear conditions with two 
revolutions from TR#5. Through decomposition, 8 IMFs can 
be obtained, and it is obvious that both 1c  and 2c  include 
high frequency components that correspond to the meshing 
frequency and its harmonics. 

Fig. 7 demonstrates that the first two components include the 
meshing frequency and its harmonics signatures. However, we 

can also observe that 2c  suffers from local distortions be-
tween both 600–800 samplings and 1500–1900 samplings. 
These distortions usually result from noise, and the reasons 
have been given in the Section 2. On the other hand, we also 
observe that both 3c  and 4c  seem to be the losing part of 2c . 
As a result, in order to mitigate the influence of noise on 
meshing frequency and its harmonics in later analysis, we 
combined the first four IMFs into one CMF. Both the time 
domain signal of CMF and its corresponding frequency spec-
trum are shown in Fig. 8.  

 
4.3 Evaluation of the proposed Average Probability Index API 

4.3.1 Construction of API with constant number of states 
and GMMs. 

To begin, we chose a normal data file from TR#5 to repre-
sent the gear’s normal status. According to the feature extrac-
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Fig. 6. The results of normal gear condition with two revolutions using 
EMD from TR#5. 
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Fig. 7. Frequency domain exhibition of 1c  and 2c  with two revolu-
tions. (a) Frequency spectrum of signal 1c ; (b) frequency spectrum of
signal 2c . 
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Fig. 8. The signal of CMF and its spectrum with two revolutions. (a) 
The signal by combining the first four IMFs; (b) its frequency spectrum.
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Fig. 9. Comparison of KI, API, and FGP1 using TR#5 under constant 
torque. (a) Health evaluation using FGP1; (b) health evaluation using 
KI; (c) health evaluation using API. 
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tion procedure described in Section 3.1, only the first 16 revo-
lution samplings in each piece of the signal were needed to 
reduce the online computing time. Then, we divided 16 revo-
lution samplings into 8 equal length signals, with L=8. Each of 
these contained 2118 sampling points, which included 2 revo-
lutions. The decomposition process was introduced in Section 
4.2. After we obtained the single CMF, demodulation was 
needed, and the Hilbert Transform was performed to extract 
the characteristic signatures. 

After 8 demodulated CMFs were obtained, we constructed 
the input features using (13)-(16). The formation of the input 
features is given as follows: 
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Further, we used these input features to train the HMM 

model. The HMM used here is a 5-state model with a diagonal 
covariance matrix containing a mixture of 3 Gaussian models. 
Once the HMM of the normal condition is trained, the trained 
HMM will be used for the whole life of the test with other 

jT s  being the validation data. Finally, we construct API by 
(17) to reflect the health condition of the gearbox. 

 
4.3.2 Evaluation of API using TR#5 under constant number 

of states and GMMs. 
In this section, we will evaluate API and compare it with 

other fault growth parameters, including FGP1 and KI. FGP1 
is defined as the part (percentage of points) of the residual 
error signal that exceeds three standard deviations calculated 
from the baseline residual error signal [14]: 
 

0
1

1 100 ( 3 ),
L

i
i

i

wFGP I r r
W

σ
=

= > +∑   (19) 

 
where 
 

0 0
0

1

( 3 ) 1 1 ( 3 )
3

,

i
i i i

L

i
i

r rw I r r I r r

W w

σ σ
σ

=

⎛ ⎞⎢ ⎥−= ≤ + + − + > +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

=∑
.  (20) 

 
Here, ir ’s are the current residual error signal points, r  is the 
mean value of the current residual signal, 0σ  is the “baseline” 
standard deviation, ( )I ⋅  is the indicator function, and ⋅⎢ ⎥⎣ ⎦  is 
the floor function. In addition, another index based on the 
kurtosis of the residual error signal is presented here for com-
parison, which is called the Kurtosis Index (KI). The kurtosis 
usually increases if the signals are properly filtered, and the 
kurtosis of the residual error signal has been proven to give the 
earliest indication of gear tooth fault [15]. 

Then, we used vibration data from TR#5 to evaluate the per-
formance of FGP1, KI, and API for gearbox health evaluation. 
In TR#5, two adjacent teeth on the drive gear were broken 
after test-rig shutdown. The total number of running hours 
was 127.4 hours, including 83 data files. In order to keep a 
constant workload, we chose data with file numbers from 13 
to 83, which corresponded to all vibration data collected under 
Condition #2. 

The health evaluation results for the gear fault are shown in 
Fig. 9. It should be emphasized that the decrease in API repre-
sents the deterioration of the machine health condition, while 
for FGP1 and KI, the increase of the health index represents 
deterioration. First, we can find that all three indexes can de-
scribe the gear health condition. However, the comparison 
results show that the health trend described by API gradually 
deteriorates and KI remains almost constant, while the fluctua-
tion of FGP1 is obvious before the occurrence of an early fault. 
This means that the visual inspection of API and KI is better 
than FGP1. Since API has its own threshold (red cross marker 
line), it can identify the occurrence of early faults automati-
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Fig. 10. Comparison of KI, API, and FGP1 using TR#10 under con-
stant torque. (a) Health evaluation using FGP1; (b) health evaluation
using KI; (c) health evaluation using API. 
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cally. Therefore, we can conclude that API with its semi-
dynamic threshold is the best of the three indexes under con-
stant output torque. 

 
4.3.3 Evaluation of API using TR#10 under constant number 

of states and GMMs 
TR#10 was shut down with distributed gear teeth broken on 

the drive gear at the end of the test. The total number of run-
ning hours was 189.25 hours, including 148 data files. Simi-
larly, we chose data files with numbers from 13 to 148. The 
comparison results are shown in Fig. 10. In Fig. 10, we also 
see that all three indexes can reflect gear health condition. For 
FGP1 in Fig. 10(a) it is hard to precisely identify the occur-
rence of a fault. Moreover, in Fig. 10(b), KI exhibits irregular 
fluctuation as there is a great change at file number 40 that 
causes severe distortion for visual inspection. On the other 
hand, Fig. 10(c) shows that API with its semi-dynamic thresh-
old can detect the occurrence of an early fault in the gear at 
file number 40. This led us to conclude that API with its semi-
dynamic threshold was the best among the three condition 
monitoring indexes. 

 
4.3.4 Evaluation of API with different number of states and 

GMMs 
It is known that the number of states and GMMs can have an 

impact on the accuracy of fault diagnosis with HMM. How-
ever, in most studies on Hidden Markov Models for fault di-
agnosis, no detailed discussion is given on how to choose the 
optimal number of states and GMMs. In order to investigate 
this problem, an experiment was conducted to vary the num-
ber of GMMs under different states based on the work in Sec-
tion 4.3.2. At the same time, we found that the maximum 
number of GMMs decreased when the number of states in-
creased. Fig. 11 plots the relationship between the maximum 
number of GMMs and the number of states in this study. 

In the following experiments, we fix the number of states at 
2 and vary the number of GMMs from 2 to the maximum. 
Similar to Fig. 9(c), we found that API detected the occur-
rence of early faults in TR#5 at file number 72 with different 
GMMs. Further, we varied the number of states from 2 to 7 
and repeated the procedure above. Fig. 12 shows the occur-
rence of an early fault in TR#5 at file number 72. 

The same experiment was performed in TR#10. The results 
indicated the occurrence of early faults at file number 40. 
From Fig. 12 and Fig. 13, we conclude that API has less sensi-
tivity to the selection of number of GMMs and states. In other 
words, this proposed index can avoid the problem concerning 
the selection of the optimal number of GMMs and states in the 
application of HMM with a mixture of Gaussian outputs. 
 

5. Conclusions 

In this paper, we developed an adaptive health evaluation 
index called Average Probability Index (API) based on EMD 
and HMM. Compared with other research in fault diagnosis 

with EMD and/or HMM, our purpose was to realize online 
health evaluation. Therefore, details were given to show the 
construction of a health index and its threshold criteria. Two 
sets of vibration data collected from MDTB were used to vali-
date the proposed index with its dynamic threshold. The anal-
ysis results showed that API can well describe the health con-
dition of gears. The advantages of this index can be summa-
rized as follows: 

The proposed index can be regarded as an adaptive one since 
EMD is an adaptive procedure, compared with Wavelet 
Transform, Wavelet Packet Transform, and Wavelet Lifting 
Scheme. 

API gives a quantitative description of machine health con-
dition, which can be used for estimation of machinery remain-
ing life and maintenance decision analysis. 

API has less sensitivity to the selection of the number of 
GMMs and states. 

The proposed method needs very few samples for model 
training. Therefore, the dimensionality of data is small, and it 
is appropriate for online condition monitoring with less com-
putation time. 
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